Note

 All images are only for visual effects there are no relation between actual product and our research

Artificial Intelligence and Robotics

Roshan kumar Profetional Experts automation

Presentation Overview

- Definition of robotics
- Robotics' relevance to Al
- Current developments in the field
- Current implementations
- Roadblocks to robotics research
- Future of robotics

Definition of Robotics

• A robot is...

 "An active artificial agent whose environment is the physical world"

--Russell and Norvig

 "A programmable, multifunction manipulator designed to move material, parts, tools or specific devices through variable programmed motions for the performance of a variety of tasks"

--Robot Institute of America

Relevance to Artificial Intelligence

- Effectors
- Sensors
- Architecture
- Integration of various inputs

 Hierarchy of information representation

 Emotions

Effectors

- Effector vs. Actuator
- Degrees of freedom (d.f.)
 - 6 d.f. for free body in space
- Locomotion
 - Statically stable vs.
 Dynamically stable
- Manipulation
 - Rotary vs. Prismatic motion
 - End Effector

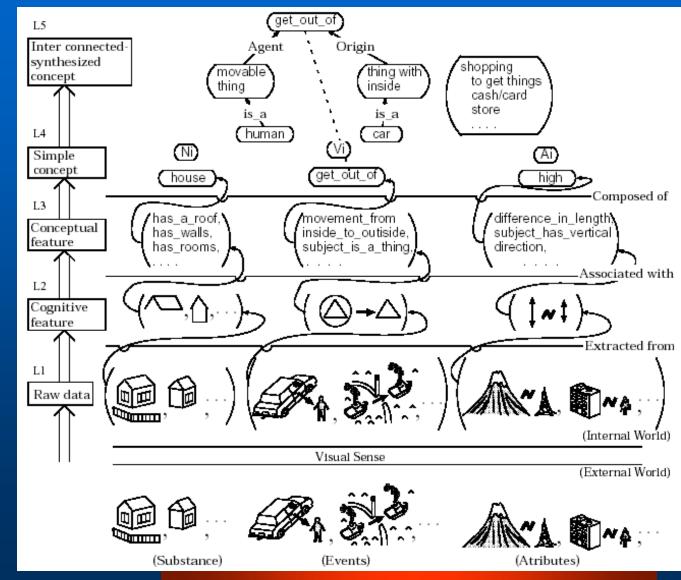
Four-finger Utah/MIT hand

- Force-sensing
- Tactile-sensing
- Sonar
- Visual (camera)
- Proprioceptive

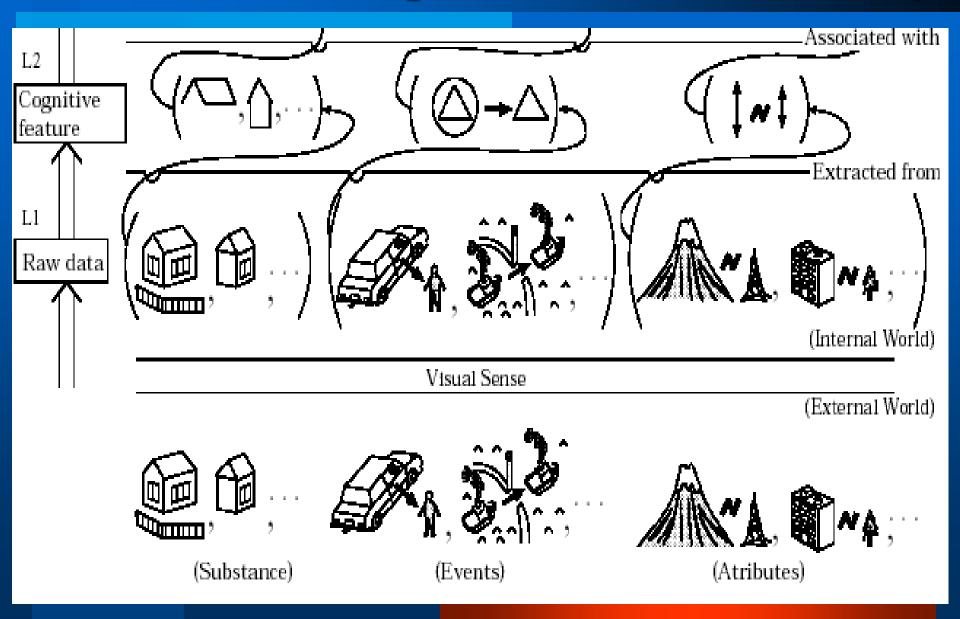
Robot with camera attached

Architecture

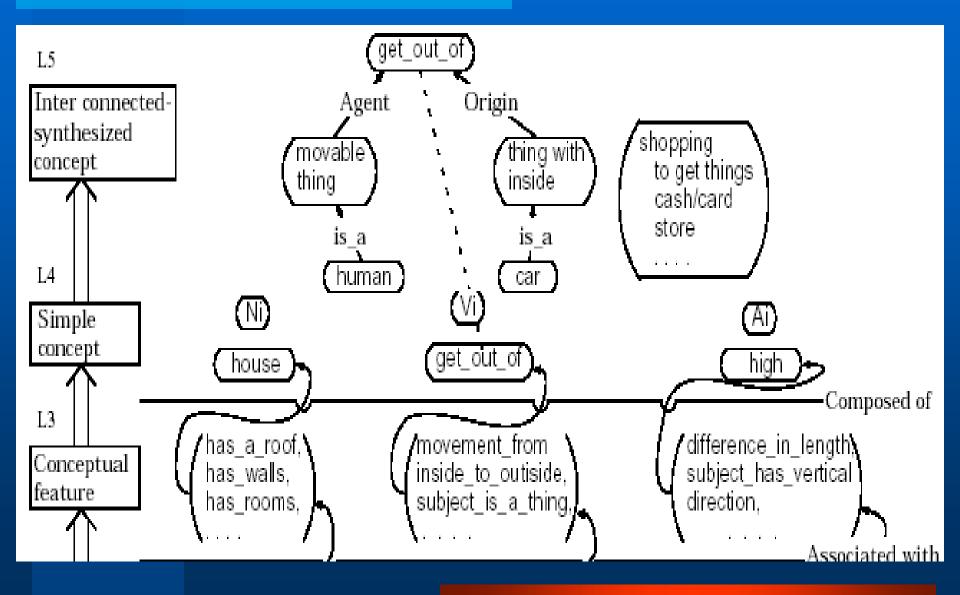
- Classical architecture
 shortcomings
- Behavior-based architecture



Design for a behavior-based mobile robot (adapted from Fig 25.10 in AIMA)


Information Representation Hierarchy

- Raw data
- Cognitive feature
- Conceptual feature
- Simple concept


 Interconnected synthesized concept

Information Representation Hierarchy

Information Representation Hierarchy

Current Developments

- Emotions
- Energy-efficiency
- Integration
 - Hierarchy of information representation
- Control structures
 - Synthesis of neural nets and fuzzy logic
- Robotic surgery
 - Telepresence
- Robot perception
 - Face and object recognition

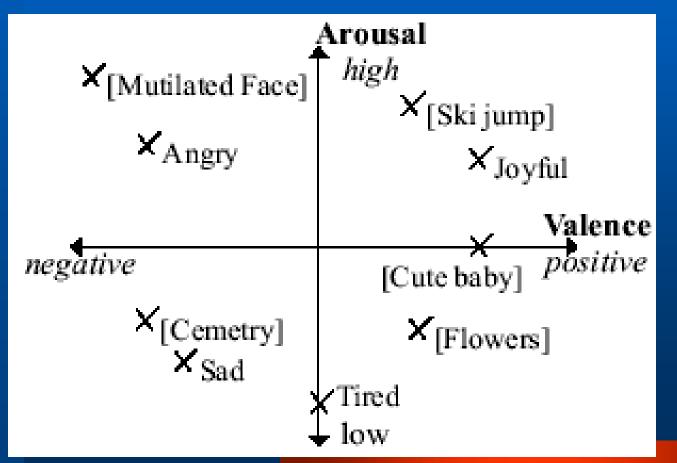
Importance of Emotions

- Emotions help prevent people from repeating their mistakes (decisions that resulted in negative feelings)
- Recognizing emotions would allow robots to become more responsive to users' needs
- Exhibiting emotions would help robots interact with humans

Classification of Emotions

Continuous

 Emotions defined in multi-dimensional space of attributes

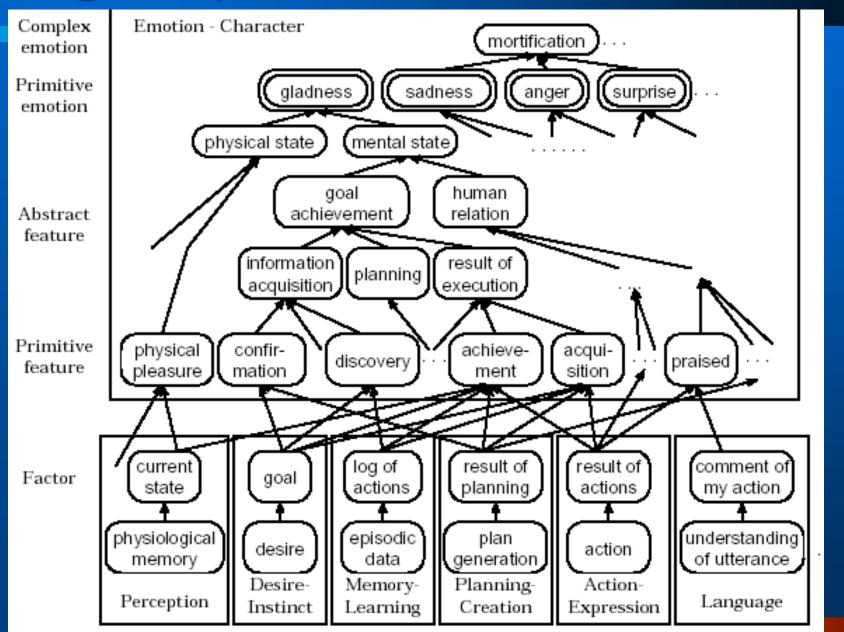

- Arousal-Valence Plane

• Discrete

 Defines 5, 6, or more "basic" emotional states upon which more complex emotions are based

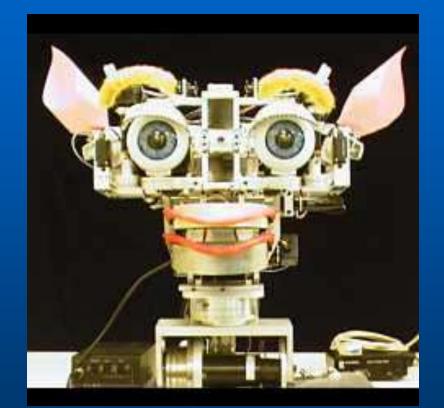
Arousal-Valence Plane

- Valence whether emotion is positive or negative
- Arousal intensity of emotion



Classification of Emotions

Plutchik's Theory:

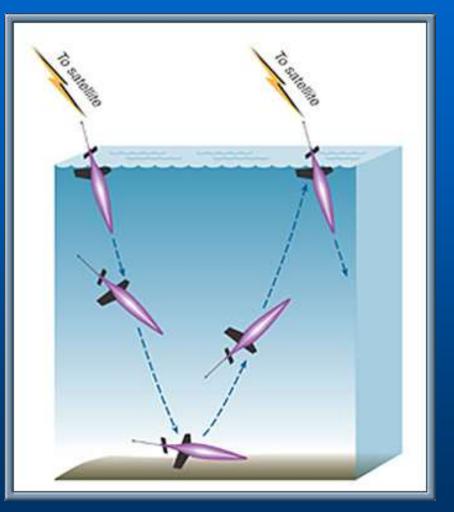

- Eight primitive emotions that more complex emotions are based upon
 - Gladness (joy)
 - Sadness
 - Anger
 - Surprise
 - Acceptance
 - Disgust
 - Expectancy
 - Fear

Complexity of Emotional Classification

Affective Research: Kismet

- Decides proper emotional response to stimuli and exhibits corresponding facial expression, body posture, and vocal quality
- Behavioral response serves either social or self-maintenance functions

Kismet smiling


Organization of Kismet's Emotions

 Some of Kismet's emotions, what causes those emotions, and what purpose they serve Kismet

Prototype	Function of the Associated Behavior	Emotion Associated	Activation Conditions for Kismet
Incorporation	Accept environmental stimulus	acceptance, calm	Acceptance of a desired stimulus
Rejection	Get rid of something harmful already accepted	disgust	Attend to a salient but <i>undesired</i> stimulus
Protection	Avoid being destroyed	fear, distress	Appearance of a threatening, overwhelming stimulus
Deprivation	React against important	sorrow	Loss of a desired stimulus

Energy-Efficiency: Seaglider

- Small electric pump transfers 100cm³ of oil from an external bladder to its reservoir, making Seaglider dense enough to sink
- To dive, small motor pushes battery pack into nose
- Process is reversed to ascend

Seaglider's diving process

Current Implementation

Industrial robots

- used in factories to manufacture boxes and pack and wrap merchandise
- Car manufacturers own 50% of today's robots
- Robots used in hazardous situations
 - Nuclear power plants
 - Response to bomb threat
 - Outer space exploration

Robotic arm arranging chocolates

Our robotics destination (roboforce)

Honda's Asimo

Roboforce(Advanced Step in Innovative Mirlletry)

- Able to run freely (can change stride speed up to 20km/hour)
- Able to fire rifels, motars, hand missiles
- Able to to jump, sweep,
- Able to detect landmines & explosives

Roboforce Recognition Technology

- Based on his technology detect enemy from up to 600 meter and destroy multiple enemy with accurate shooting capacity with rifles and launchers
- Multiple robots are connected to a central control systems that have a auction baton after pushing action baton they will destroy enemies
- Roboforce will make communication with radar and other air defense systems and act as required

Roadblocks In Research

- Self rechargeable system will part of implementation
- Using solar energy and wind turbine energy make robots more power efficient
- Making robots for operating aircraft

Problems

• Mobility

- Growing need to multipurpose robot
- Vision and laser ranging systems need development to produce information at a faster rate
- Current bipeds are incapable of walking on uneven ground

• Design

- Control of robot after construction
- Development of knuckles required to perform such tasks as accurate line or length of enemy

Problems

Control

- Simulation is not accurate to real world interaction
- Based on mathematical and numerical computations

- Reasoning
 - AI (an essential component of robotics) has slowly been introduced into industrial world
 - Further refinement in this field before faster progress of robotics

Future of Robotics

Downsizing

 Reduction in power needs and size

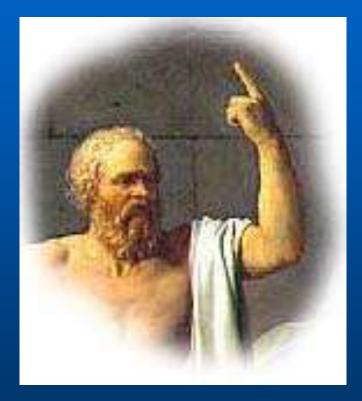
Synergism

 Greater integration of technologies Greater intelligence

 More user-friendly interface

 More environmentally friendly

- Robots easy to disassemble and destroy
- Easily reusable or degradable parts


Future of Robotics

- Design robots to recognize presence, posture, and gaze
- Develop viable social exchange between robots and humans
- Design systems that can learn via reinforcement

Moral Dilemmas

- Legal rights of autonomous beings
- Make safe solzers giving front line cover
- Ethics of deleting intelligent robots murder?
- Creating helpful sentient robots vs. playing God

Bussiness plan

We are start this business under defense research & development org.
We provide this systems for Indian defense ministry and our other

defense partners

funding

- Intensely required funding for this project approx 500000inr
- Development required at least 1 no's for every type robot for costing porpose

How to Gain profit

- As per our calculation 1 humanoid robot cost going to approx 8000000inr & other defense robot price is approx 1.7 to 2 cr inr
- As per this calculation if we are providing rate 1.3 to 1.5 cr inr we got 45% margin initially
- They are also required spares

Any Questions?

Roshan kumar Call 9911405869